Экспресс-контроль в обеспечении экологической безопасности в нефтегазовой отрасли: технологии и оборудование

Муравьев А.Г., ЗАО «Крисмас+» (Санкт-Петербург), директор производственно-лабораторного комплекса, к.х.н.

При обеспечении экологической безопасности необходимо оперировать информацией о факторах опасности и вредности, большая часть из которых имеет химическую природу, а соответствующие допустимые значения величин нормированы и содержатся в различной нормативной документации. Для нефтегазовой отрасли обеспечение экологической безопасности играет особую роль в виду порождения многих химических факторов опасности, создающих угрозу здоровью и жизни работающих и населения, загрязнения окружающей среды и гибели живых организмов, пожароопасности, выхода из строя дорогостоящего оборудования. Ключевым звеном в обеспечении экологической безопасности являются мероприятия экологического контроля, в ходе которых собирается главный массив сведений, составляющих предмет мониторинговых мероприятий.

Сведения, собираемые при контроле, характеризуются оперативностью, которая позволяет (при её наличии) быстро принимать решения и проводить соответствующие мероприятия по обеспечению экологической безопасности. По этой причине, применяемые методы химического контроля должны быть оперативны и, по возможности, иметь свойства экспресс-контроля. В ряде ситуаций руководитель, не имея результатов экспресс-контроля химических параметров на своём производстве, не в состоянии быстро оценить складывающуюся экологическую ситуацию и дать соответствующие указания по её нормализации или принятию экстренных мер по обеспечению безопасности.

Задачи химического контроля встречаются во многих отраслях, и применяемые специалистамианалитиками методы контроля во многих случаях являются унифицированными. Многие типы средств химического экспресс-контроля были разработаны ещё в советские времена и широко применялись на предприятиях нефтегазовой отрасли. Научно-производственное объединение ЗАО «Крисмас+», являясь разработчиком и серийным производителем ряда средств химического экспресс-контроля, давно занимается оснащением нефтегазовых служб оборудованием для оснащения экологической безопасности. Все производимые типы средств экспресс-контроля нацелены на выполнение анализа факторов (показателей), характерных
для производств определённого типа. Характеризуя нефтегазовую отрасль, можно, в числе других, выделить
следующие группы контролируемых химических веществ, и соответственно – оборудования для их химического экспресс-контроля.

1. В воздушной среде определяется очень широкий круг химических веществ, содержащихся в самой нефти и в продуктах её переработки, а также в продуктах её сгорания. Индикаторные трубки являются средствами химического контроля, производимыми уже десятки лет во многих странах и широко применяемыми во многих отраслях экономики для контроля загрязнённости воздушной среды при оценке безопасности, ущербов, угрозы здоровью и окружающей среде и т.п. Индикаторные трубки за рубежом производятся компаниями Drager (Германия), Кіtagava (Япония), Gastec (Япония) и др.; в нашей стране ведущими производителями индикаторных трубок являются ЗАО «Крисмас+», ЗАО «НПФ «СЕРВЭК», ЗАО «Промбезопасность» и др. С применением индикаторных трубок также проводится экспресс-контроль воздуха на содержание природного газа (загрязнение, утечки из трубопроводов). Определение осуществляется с применением индикаторных трубок совместно с ручным аспиратором, образующих газоопределитель химический много-компонентный (рисунок 1). Существенно, что в современных рыночных условиях индикаторные трубки ведущих отечественных производителей, как и аспираторы, являются средствами измерений, внесены в Государственный реестр и позволяют, в рабочих условиях применения, получать результат измерений с нормированной погрешностью (±15-25%).

Рис. 1. Индикаторные трубки в комплекте с аспиратором типа НП-3М (а) и НП-4 (б).

Непосредственно в парах нефти и нефтепродуктов определяются летучие углеводороды нефти (суммарно), бензол, керосин, уайт-спирит, ксилол, бензин, дизельное топливо, гексан и другие алифатические углеводороды и т.п. В продуктах сгорания нефти и нефтепродуктов также определяются, помимо указанных веществ, ещё оксиды азота и серы, угарный и углекислый газы. Основная номенклатура показателей, на-именования и характеристики индикаторных трубок для экспресс-контроля воздуха при обеспечении эколо-

гической безопасности предприятий нефтегазовой отрасли на примере изделий модели ТИ-[ИК-К] приведены в табл.1.

Таблица 1 Наименования и характеристики некоторых индикаторных трубок модели ТИ-[ИК-К] для нефтегазовой отрасли (основная номенклатура)

Определяемый компонент	Обозначение модифи- каций ТИ-[ИК-К]	Диапазоны измеряемых концентраций, $M\Gamma/M^3$	Номинальное значение объёма анализируемого воздуха, см ³	Назначение (*)
<u>Ацетон</u>	ТИ-[С3Н6О-10,0]	100-200; 200-10000	700 100	К
<u>Бензин</u> (по гексану)	ТИ-[бензин-4,0]	50-200; 200-4000	1000 100	K A
	ТИ-[бензин-6,0]	100-500; 500-6000	500 100	K A
<u>Бензол</u>	ТИ-[С6Н6-0,03]	2-30	2500	К
	ТИ-[С6Н6-1,5]	5-100; 100-1500	2000 200	K A
<u>Гексан</u>	ТИ-[гексан-0,1]	10-120	1500	K A
<u>Дизельное топ-</u> <u>ливо</u> (в пересче- те на декан)	ТИ-[дизельное топливо-6,0]	200-6000	1500	В
Диоксид азота	ТИ-[NO2-0,05]	1-10; 5-50	1000 200	K A
	ТИ-[NO2-0,2]	1-10; 10-200	1000 100	K A
Диоксид серы	ТИ-[SO2-0,13]	2-10; 10-130	1700 700	К
<u>Диоксид</u> <u>углерода</u>	ТИ-[СО2-2,0% об.]	0,01-0,1% об; 0,1-2,0% об	800 100	В
Керосин (в пересчёте на декан)	ТИ-[керосин-4,0]	50-100; 100-4000	1500 800	В К
<u>Ксилол</u>	ТИ-[С8Н10-1,5]	20-100; 100-1500	500 100	K A
Оксид азота	ТИ-[NO-0,05]	1-10; 5-50	1000 100	К
Оксиды азота (суммарно)	ТИ-[NOX-0,05]	1-10; 5-50;	1000 200	К
	ТИ-[NOX-0,2]	1-10; 10-200	1000 100	K A
Углеводороды нефти (в пересчете на гексан)	ТИ-[гексан-4,0]	50-200; 200-4000	1000 100	K A
<u>Толуол</u>	ТИ-[С7Н8-2,0]	20-200; 200-2000	700 100	K A
<u>Трихлорэтилен</u>	ТИ-[С2НС13-0,15]	2,5-10; 10-150	2000 1000	К
Уайт-спирит (в пересчете на декан)	ТИ-[уайт-спирит-4,0]	100-4000	1000	К
<u>Хлор</u>	ТИ-[С12-0,2]	1-10;	1000	К

		10-200	100	A
	ТИ-[С12-0,01]	1-10	1000	К
<u>Хлористый</u> водород	ТИ-[HCl-0,15]	2-10; 10-150	800 200	К А

Примечание. (*) В графе «Назначение» указаны: К – контроль ПДК воздуха рабочей зоны; А – контроль при аварийных ситуациях; В – определение в воздухе рабочей зоны (концентрация менее ПДК).

Следует отметить, что для экспресс-контроля воздушной среды с применением индикаторных трубок совместно с аспиратором широкое распространение получило применение разнообразных наборов, включающих индикаторные трубки по специально подобранной номенклатуре, аспиратор, принадлежности для вспомогательных анализов (например, тест-системы для анализа воды и растворов) и для отбора и хранения проб. В этой связи можно упомянуть мини-экспресс-лабораторию «Пчёлка-Р», газоопределительные мини-лаборатории серии ГХК-ПВ-5 (модификация для контроля паров нефтепродуктов), экспресс-лаборатории «Инспектор-кейс» и др. (рисунок 2, а).

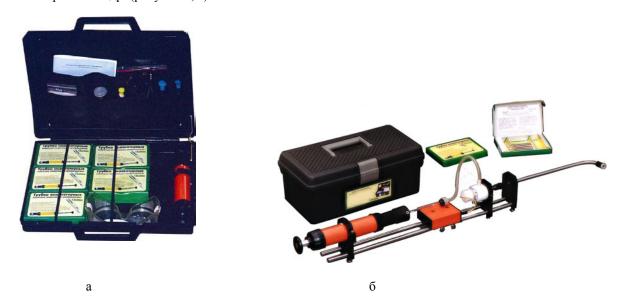


Рис 2. Мини-экспресс-лаборатория «Пчёлка-Р» (а) с зондом пробоотборным ЗП-ГХК-ПВ (б).

Важным аспектом при анализе с применением индикаторных трубок является возможность удалённого отбора газовой пробы и её перенос к оператору. Это актуально, к примеру, при анализе воздуха в колодцах, воздуховодах, закрытых резервуарах и других невентилируемых объектах, где могут скопиться пары загрязняющих веществ в столь высоких концентрациях, что оператор не сможет там работать без средств специальной защиты. Для преодоления подобных сложностей при выполнении экспресс-контроля с применением индикаторных трубок эффективно использование зонда пробоотборного ЗП-ГХК-ПВ (рисунок 2, б), позволяющего отбирать пробу на расстоянии до 2 м и более от оператора.

2. В воде водоёмов и в сточных водах на предприятиях нефтегазовой отрасли определяют значительное количество разных загрязнителей, как природного, так и техногенного характера. Объектами контроля являются также питьевая вода и бытовые сточные воды. Соответствующие методы, которые можно отнести к методам экспресс-контроля, также обеспечены промышленно выпускаемым портативным оборудованием. За рубежом портативное оборудование для химического контроля производится компаниями НАСН Со. (США), LaMotte Co.(США), AQUAMERC® (Германия) и др. В нашей стране доступны портативные комплекты для химического анализа, пригодные для учебного и профессионального применения в нефтегазовой отрасли, производимые ЗАО «Крисмас+» и ООО «Медэкотест». К таким изделиям можно отнести полевые лаборатории НКВ-р, портативные лаборатории настольные НКВ-12, «Остаточный хлор» и др., а также различные тест-комплекты. На рис. 3 приведено фото полевой лаборатории НКВ-12, позволяющей определять 24 и более (в зависимости от модификации) показателей в водах по унифицированным методикам на основе полностью готовых аналитических растворов.

Существенно, что портативные изделия содержат готовые к применению аналитические реактивы и растворы, а также свойство восполняемости расходной части изделий, предполагающее замену пустых флаконов с израсходованным раствором или растворов с истёкшим сроком годности свежим реактивом.

Рис. 3. Полевая лаборатория анализа воды НКВ-12 в развёрнутом (а) и закрытом (б) видах.

Существенно, что подобные лаборатории удобны для использования также при настольном размещении, что, при доукомплектации портативными приборами контроля (фотоколориметр, рН-метр, кондуктометр) и использования в работе аттестованных методик измерений, позволяет анализировать широкий круг показателей качества воды с производительностью и точностью, приемлемой для профессиональных аналитических измерений. Так, обеспеченность лаборатории НКВ-12 позволяет выполнять анализ на уровне нормативных требований к точности анализа воды.

Учитывая, что ряд задач по контролю показателей качества воды может быть связан с выдвижением аналитических групп непосредственно к водному объекту, интересным вариантом для операторов могут быть ранцевые укладки (рис. 4), содержащие тест-комплекты, принадлежности и руководства для анализа воды (питьевой, природной, сточной) по заданному перечню показателей.

б

Рис. 4. Ранцевая укладка лаборатории НКВ-Р (a) с баулом, содержащим запас расходуемых материалов и дополнительные модули для анализа (б).

Предложение на отечественном рынке средств, пригодных для химического экспресс-контроля на предприятиях нефтегазовой отрасли, создаёт хорошие возможности для обеспечения контролирующих подразделений относительно недорогим инструментарием для выполнения экспресс-контроля показателей, важных для оценки и мониторинга экологической ситуации и обеспечения экологической безопасности. Существенно также, что Российскими компаниями-производителями предлагаются решения по обеспечению соответствующих подразделений и служб конкурентоспособной продукцией, способной к импортозамещению, что также важно в современных условиях.

Подробнее тема раскрывается в докладе.